
Ch. 11: Rotational Vectors & Angular Momentum 
Tuesday March 17th  

Reading: up to page 182 in Ch. 11 

• Quick review of rotational inertia and kinetic energy 
• Torque and Newton’s 2nd law 
• Angular momentum  
• Conservation of angular momentum 
• Summary of translational/rotational equations 
• Examples, demonstrations and iclicker 
• Return mid-term exams 

• Normal schedule for the next several weeks. 
• Material covered today relevant to LONCAPA due tomorrow. 
• Next Mini-Exam on Thursday 26th (LONCAPA #13-17). 



Kinetic energy of rotation 
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where mi is the mass of the ith particle and vi is its speed. 
Re-writing this: 
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The quantity in parentheses tells us how mass is distributed 
about the axis of rotation. We call this quantity the 
rotational inertia (or moment of inertia) I of the body with 
respect to the axis of rotation. 
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Consider a (rigid) system of rotating masses (same ω): 
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Rotational Inertia for Various Objects 



Kinetic energy consists of rotational & translational terms: 

  vcm =ωR

  M' = 1+ f( )MModified mass: (look up f in Table 10.2) 

Rolling motion as rotation and translation 
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Rolling Motion, Friction, & Conservation of Energy 
• Friction plays a crucial role in rolling motion: 

• without friction a ball would simply slide without rotating; 
• Thus, friction is a necessary ingredient. 

• However, if an object rolls without slipping, mechanical energy is 
NOT lost as a result of frictional forces, which do NO work. 

• An object must slide/skid for the friction to do work. 
• Thus, if a ball rolls down a slope, the potential energy is converted 
to translational and rotational kinetic energy. 
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Torque and Newton’s 2nd Law 

•  Torque (   ) is the rotational analog of 
force, and results from the application 
of one or more forces. 

•  Torque depends on the rotation axis. 
•  Torque also depends on: 

–  the magnitude of the force; 
–  the distance from the rotation axis to 

the force application point; 

τ
Small torque 

Medium torque 

Large torque 



Torque and Newton’s 2nd Law 

•  Torque (   ) is the rotational analog of 
force, and results from the application 
of one or more forces. 

•  Torque depends on the rotation axis. 
•  Torque also depends on: 

–  and the orientation of the force relative 
to the displacement from the axis to the 
force application point. 

τ

Large torque Greatest torque Less torque Zero torque 



Torque and Newton’s 2nd Law 
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Angular quantities have direction 
The direction of angular velocity is given by the right-hand rule. 

Torque is perpendicular to both the force 
vector and the displacement vector from the 
rotation axis to the force application point. 
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Angular Momentum 
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• SI unit is Kg.m2/s. 

    Angular momentum 
!
L is defined as:

!
L = !r × !p = m !r × !v( )

•  For a single particle, angular momentum is a vector given 
by the cross product of the displacement vector from the 
rotation axis with the linear momentum of the particle: 

–  For the case of a particle in a 
circular path, L = mvr, and is 
upward, perpendicular to the circle. 

–  For sufficiently symmetric objects,      
angular momentum is the product 
of rotational inertia (a scalar) and 
angular velocity (a vector): 

  L = rpsinφ = mvr sinφ
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Conservation of angular momentum 

If the net external torque acting on a system is zero, the 
angular momentum of the system remains constant, no 
matter what changes take place within the system. 

It follows from Newton's second law that: 



Conservation of angular momentum 

If the net external torque acting on a system is zero, the 
angular momentum of the system remains constant, no 
matter what changes take place within the system. 

It follows from Newton's second law that: 

What happens to kinetic energy? 
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• Thus, if you increase        by reducing I, you end 
up increasing K 

• Therefore, you must be doing some work 
• This is a very unusual form of work that you do 
when you move mass radially in a rotating frame  

• The frame is accelerating, so Newton's laws do 
not hold in this frame  
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More on conservation of angular momentum 



The Gyroscope 

Used in navigational devices - even modern ones. 

Fg = Mg 
   

   

Newton’s 2nd law:  
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Summarizing relations for translational and 
rotational motion 



The vector product, or cross product 
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