Ch. 11: Rotational Vectors & Angular Momentum Tuesday March 17th

- •Quick review of rotational inertia and kinetic energy
- •Torque and Newton's 2nd law
- Angular momentum
- Conservation of angular momentum
- Summary of translational/rotational equations
- •Examples, demonstrations and *i*clicker
- Return mid-term exams
- Normal schedule for the next several weeks.
- Material covered today relevant to LONCAPA due tomorrow.
- Next Mini-Exam on Thursday 26th (LONCAPA #13-17).

Reading: up to page 182 in Ch. 11

Kinetic energy of rotation

Consider a (rigid) system of rotating masses (same ω):

where m_i is the mass of the *i*th particle and v_i is its speed. Re-writing this:

$$K = \sum \frac{1}{2} m_i \left(\omega r_i \right)^2 = \frac{1}{2} \left(\sum m_i r_i^2 \right) \omega^2$$

The quantity in parentheses tells us how mass is distributed about the axis of rotation. We call this quantity the rotational inertia (or moment of inertia) *I* of the body with respect to the axis of rotation.

$$I = \sum m_i r_i^2 \qquad \qquad K = \frac{1}{2} I \omega^2$$

Rotational Inertia for Various Objects

Table 10.2 Rotational Inertias

Kinetic energy consists of rotational & translational terms:

$$K = \frac{1}{2} I_{\rm cm} \omega^2 + \frac{1}{2} M v_{\rm cm}^2 = K_r + K_t$$
$$K = \frac{1}{2} \left\{ fMR^2 \right\} \frac{v_{\rm cm}^2}{R^2} + \frac{1}{2} M v_{\rm cm}^2 = \frac{1}{2} M' v_{\rm cm}^2$$

Modified mass: M' = (1+f)M (look up f in Table 10.2)

Rolling Motion, Friction, & Conservation of Energy

Friction plays a crucial role in rolling motion:
without friction a ball would simply slide without rotating;
Thus, friction is a necessary ingredient.

- However, if an object rolls without slipping, mechanical energy is <u>NOT</u> lost as a result of frictional forces, which do <u>NO</u> work.
 An object must slide/skid for the friction to do work.
- •Thus, if a ball rolls down a slope, the potential energy is converted to translational and rotational kinetic energy.

Torque and Newton's 2nd Law

- Torque (T) is the rotational analog of force, and results from the application of one or more forces.
- Torque depends on the rotation axis.
- Torque also depends on:
 - the magnitude of the force;
 - the distance from the rotation axis to the force application point;

Medium torque

Torque and Newton's 2nd Law

- Torque (T) is the rotational analog of force, and results from the application of one or more forces.
- Torque depends on the rotation axis.
- Torque also depends on:
 - and the orientation of the force relative to the displacement from the axis to the force application point.

Angular quantities have direction

The direction of angular velocity is given by the **right-hand rule**.

Same applies to torque:

Torque is perpendicular to both the force vector and the displacement vector from the rotation axis to the force application point.

$$\vec{\tau} = \vec{r} \times \vec{F}$$
 $(|\vec{\tau}| = rF\sin\theta)$

Angular Momentum

• For a single particle, angular momentum is a vector given by the cross product of the displacement vector from the rotation axis with the linear momentum of the particle:

Angular momentum
$$\vec{L}$$
 is defined as: $\vec{L} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$

- For the case of a particle in a circular path, L = mvr, and is upward, perpendicular to the circle.
- For sufficiently symmetric objects, angular momentum is the product of rotational inertia (a scalar) and angular velocity (a vector):

$$\vec{L} = I\vec{\omega}$$

•SI unit is $Kg.m^2/s$.

Conservation of angular momentum

It follows from Newton's second law that:

If the net external torque acting on a system is zero, the angular momentum of the system remains constant, no matter what changes take place within the system.

Conservation of angular momentum

It follows from Newton's second law that:

If the net external torque acting on a system is zero, the angular momentum of the system remains constant, no matter what changes take place within the system.

 $\vec{L} = a \text{ constant}$

$$\vec{L}_i = \vec{L}_f$$

$$I_i \omega_i = I_f \omega_f$$
$$\frac{\omega_f}{\omega_i} = \frac{I_i}{I_f}$$

What happens to kinetic energy?

$$K_{f} = \frac{1}{2} I_{f} \omega_{f}^{2} = \frac{1}{2} I_{f} \left(\frac{I_{i}^{2} \omega_{i}^{2}}{I_{f}^{2}} \right) = \frac{I_{i}}{I_{f}} \frac{1}{2} I_{i} \omega_{i}^{2} = \frac{I_{i}}{I_{f}} K_{i}$$

•Thus, if you increase ω by reducing *I*, you end up increasing *K*

- Therefore, you must be doing some work
- This is a very unusual form of work that you do when you move mass radially in a rotating frame
- •The frame is accelerating, so Newton's laws do not hold in this frame

The Gyroscope

Used in navigational devices - even modern ones.

Summarizing relations for translational and rotational motion

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	v = dx/dy	Angular velocity	$\omega = d\theta/dt$
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$
Mass	т	Rotational inertia	Ι
Newton's second law	$F_{\rm net} = ma$	Newton's second law	$\tau_{\rm net} = I\alpha$
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$

The vector product, or cross product $\vec{a} \times \vec{b} = \vec{c}$, where $c = ab\sin\phi$ $\vec{c} = \vec{a} \times \vec{b}$ $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

î

Direction of $\vec{c} \perp$ to both \vec{a} and \vec{b}

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = \hat{k}$$
 $\hat{j} \times \hat{i} = -\hat{k}$

$$\times \hat{k} = \hat{i} \qquad \qquad \hat{k} \times \hat{j} = -\hat{i}$$

$$\hat{k} \times \hat{i} = \hat{j}$$
 $\hat{i} \times \hat{k} = -\hat{j}$

(a)

a