Ch. 11: Rotational Vectors & Angular Momentum
Tuesday March 17t

*‘Quick review of rotational inertia and kinetic energy
*Torque and Newton's 2" |aw

Angular momentum

Conservation of angular momentum

-Summary of translational/rotational equations
‘Examples, demonstrations and iclicker

‘Return mid-term exams

* Normal schedule for the next several weeks.
* Material covered today relevant to LONCAPA due tomorrow.
* Next Mini-Exam on Thursday 26™ (LONCAPA #13-17).

Reading: up to page 182 in Ch. 11



Kinetic energy of rotation

Consider a (rigid) system of rotating masses (same w):
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where m; is the mass of the ith particle and v, is its speed.

K= tm(or) =4(Xmr?)o’

The quantity in parentheses tells us how mass is distributed
about the axis of rotation. We call this quantity the
rotational inertia (or moment of inertia) 7 of the body with
respect to the axis of rotation.

I = ml.rl.2 K=1]w

Re-writing this:




Rotational Inertia for Various Objects

Table 10.2 Rotational Inertias
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Thin rod about center Thin ring or hollow cylinder
I= 1—2ML2 about its axis
1= MR?

Solid2 sphe;e about diameter Flat plate about perpendicular axis
I'=35MR =LtM@+p?)
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Disk or solid cylinder
about its axis
1=1MR?

L Thin rod about end
e

Hollow spherical shell about diameter
1=3%MR?

<_> Flat plate about central axis
1=3Ma?




Rolling motion as rotation and translation

{a) Pure rotation + (b) Pure translation = (¢) Rolling motion
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Kinetic energy consists of rotational & translational terms:
K= o’+iM’ =K +K
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K =1 fMR® } L =1 M

Modified mass: M'=(1+f)M  (look up fin Table 10.2)



Rolling Motion, Friction, & Conservation of Energy

*Friction plays a crucial role in rolling motion:

-without friction a ball would simply slide without rotating;

* Thus, friction is a necessary ingredient.

‘However, if an object rolls without slipping, mechanical energy is

NOT lost as a result of frictional forces, which do NO work.
*An object must slide/skid for the friction to do work.

* Thus, if a ball rolls down a slope, the potential energy is converted
to translational and rotational kinetic energy.




Torque and Newton's 2" Law
Small torque

Torque (T) is the rotational analog of P
force, and results from the application O%\?’ )
of one or more forces. /

F

Torque depends on the rotation axis.

Torque also depends on: Medium torque
— the magnitude of the force; :

— the distance from the rotation axis to
the force application point;

Large torque

~|




Torque and Newton's 2" Law

« Torque (7T) 1s the rotational analog of
force, and results from the application
of one or more forces.

* Torque depends on the rotation axis.

* Torque also depends on:

— and the orientation of the force relative
to the displacement from the axis to the
force application point.

‘.
. .
o* B

Greatest torque Less torque Zero torque

™

..
* .
. )




Torque and Newton's 2" Law

Rotation axis

? — — —
v,
F
Detinition: T = |7‘ X F|=rFsin6
Newton’s 2™ law: T = 1O
| S

Rotffmonal Rotational Rotational

equivalent equivalent acceleration

of force of mass




Angular quantities have direction

The direction of angular velocity 1s given by the right-hand rule.
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Same applies to torque:

Torque 1s perpendicular to both the force
vector and the displacement vector from the

rotation axis to the force application point.

T=FxXF (‘f‘IFFSiHQ)




Angular Momentum

* For a single particle, angular momentum 1s a vector given
by the cross product of the displacement vector from the
rotation axis with the linear momentum of the particle:

Angular momentum L is defined as: L=7 X p= m(7 X \7)

L=rpsing=mvrsing - Forthe case of a particle in a
z circular path, L =mvr, and is
4 upward, perpendicular to the circle.

— For sufficiently symmetric objects,

angular momentum is the product

X of rotational inertia (a scalar) and
A ishependicls @ngular velocity (a vector):

“to r.

—

L=1w
+SI unit is Kg.m?/s.




Conservation of angular momentum

It follows from Newton's second law that:

LT the nei exiernal J’Jr"]JZ act ng 0N a system Is zero, the
angular momentum of: the sysfem remains constant, no

matter whai changes take place within the system.
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L = a constant
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Conservation of angular momentum

It follows from Newton's second law that:

I'f the netf external ‘TJI"]J/ dacting on a system is zero, the

angular momentum of: the sysfem remains consfant;, no
maiifier whai: changes take place witnin fhe system.

_ What happens to kinetic energy?
L =a constant
K o=t1 o =tp | B0 | Ly o Lk
- 2t Yy Tty 2 2 i
Li o Lf ]f ] ]f
*Thus, if you increase @ by reducing /, you end
To =1 o up increasing K
S *Therefore, you must be doing some work
0 I *This is a very unusual form of work that you do
U — when you move mass radially in a rotating frame
o, 1 f *The frame is accelerating, so Newton's laws do

not hold in this frame



More on conservation of angular momentum
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The Gyroscope
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-

Newton’s 274 law:

Used in navigational devices - even modern ones.



Summarizing relations for translational and
rotational motion

Pure Translation (Fixed Direction)

Pure Rotation (Fixed Axis)

Position

Velocity

Acceleration

Mass

Newton’s second law

Work

Kinetic energy

Power (constant force)
Work—kinetic energy theorem

X

v = dx/dy
a = dv/dt
m

F. = ma
W= [F dx
K = imy?
P = Fy
W= AK

Angular position 0

Angular velocity w = do/dt
Angular acceleration a = do/dt
Rotational inertia l

Newton’s second law T = 1O
Work W=/[7do
Kinetic energy K = ilw?
Power (constant torque) P= 1w
Work—kinetic energy theorem W = AK




The vector product, or cross product

~?
a =

> —p alp
c'=b X a

a X b =c, where c=absing
Zz’xE:—(Exa)
Directionof ¢ L to both @ and b

ixXj=k ixi=—k
ixk=i kxj=—i
kxi=j ixk=—]



